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Abstract: Louisiana has lost over 4800 km2 of coastal land since 1932, and a large-scale effort to
restore coastal Louisiana is underway, guided by Louisiana’s Comprehensive Master Plan for a Sustainable
Coast. This paper reviews science-based planning processes to address uncertainties in management
decisions, and determine the most effective combination of restoration and flood risk reduction
projects to reduce land loss, maintain and restore coastal environments, and sustain communities.
The large-scale effort to restore coastal Louisiana is made more challenging by uncertainties in
sediment in the Mississippi River, rising sea levels, subsidence, storms, oil and gas activities, flood-
control levees, and navigation infrastructure. To inform decision making, CPRA uses structured
approaches to incorporate science at all stages of restoration project planning and implementation
to: (1) identify alternative management actions, (2) select the management action based on the best
available science, and (3) assess performance of the implemented management decisions. Applied
science and synthesis initiatives are critical for solving scientific and technical uncertainties in the
successive stages of program and project management, from planning, implementation, operations,
to monitoring and assessment. The processes developed and lessons learned from planning and
implementing restoration in coastal Louisiana are relevant to other vulnerable coastal regions around
the globe.

Keywords: ecosystem restoration; coastal and adaptation planning; estuaries; Mississippi River Delta

1. Introduction

River deltas are some of the most ecologically and economically productive and
highly populated environments in the world, and also some of the most vulnerable [1,2].
Low-lying landscapes built at river mouths, the architecture of a delta is the product of
both a river system and its sediments, as well as the physical processes of the receiving
basin [3]. The world’s deltas formed during the last 6500–8500 years as sea level rise
stabilized after the last glacial maximum ~18,000 years ago [4,5]. Changes in environmental
conditions both in the drainage basin and the receiving basin can profoundly transform
the delta plain, and lead to advancement or retreat of the delta, aggradation, or delta
switching. Subsidence from both natural compaction processes and anthropogenic factors.
such as fluid withdrawal, increases the relative sea level rise of these coastal landscapes.
Reductions in sediment supply due to upstream levees and dams lessen mitigation of
subsidence [6], with an estimated 25 million people living on sediment-starved deltas [7].
Although 11,000 deltas globally have experienced net land gain over the past 30 years from
increases in river fluvial sediment content from deforestation, as well as redistribution of
sediments on deltas transitioning toward increasingly tide-dominated, these gains are not
expected to be sustained under rising sea level conditions [8–11] and projected declines
in fluvial sediment delivery [12]. Many of the world’s deltas are also population centers,
with the majority of megacities located on deltas [13]. These deltas are impacted by human
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habitation and urbanization, and by increased subsidence from large-scale engineering
projects and resource extraction [14]. Flooding of these highly populated delta surface
areas is estimated to increase by 50% in the twenty-first century [9].

Coastal Louisiana, largely built by the Mississippi and Atchafalaya Rivers over the
last ~7000–8000 years, lost an estimated 4833 km2 of its land area from the early 1930s to
2016 [15]. The Mississippi River Delta is one of the most ecologically important habitats
in North America [16], providing habitat for millions of migratory waterfowl [17] and
supporting highly productive fisheries [18] and tourism. The top port (by tonnage) in the
United States is the Port of South Louisiana, positioned in the Mississippi River Delta [19],
and Louisiana is a major supplier of oil and natural gas [20]. A diverse landscape of
freshwater, brackish, and saline wetlands, barrier islands, coastal bays, low-relief uplands,
and ridges, coastal Louisiana is home to over two million people, including unique coastal
cultures. Projections of future coastal Louisiana land loss, in the absence of sediment
input, range from 10,000 km2 to 13,500 km2 by 2100 [21] to 3126 km2 to 10,679 km2 in
50 years [22]. Building on the current trajectories, undertaking no additional restoration
action is projected to lead to both ecological and socio-economic catastrophe in coastal
Louisiana’s deltaic plain.

Ecosystem sustainability is often constrained in highly-engineered deltaic systems
worldwide [23]. Anthropogenic interventions such as levees, dams, and channel deepening
for navigation control the development of many deltas currently, moving the morphology
away from a natural state [10], and increasing the importance of understanding delta
instabilities such as bank failure and avulsion [24,25]. Restoration of deltaic systems can be
complicated by sediment and nutrient loads that are often affected by actions thousands of
kilometers upstream [26]. Although the scientific knowledge of deltaic systems is advanced,
knowledge about restoration processes in these complex systems is comparatively nascent.
Integrating science into environmental decision making can be difficult, and the time
between detecting a problem and political action can be lengthy [27–30]. This presents
additional challenges as environmental changes are occurring at accelerated rates due to
human impacts. There is a growing need for adaptation planning, and for chronicling and
evaluating planning processes, which are not well known among practitioners and the
scientific community [31].

The transdisciplinary application of science and engineering necessary to restore and
protect coastal Louisiana is pioneering. This paper reviews, describes, and evaluates the
processes Louisiana’s Coastal Protection and Restoration Authority (CPRA) has developed
and uses to make science-based management decisions in uncertain conditions, with input
from stakeholders, to restore a low-lying coastal ecosystem. This information has previously
mostly only been available in governmental reports, which were reviewed and synthesized
in combination with institutional knowledge for this paper. Successful management
requires integrating science into decision making to support the strategic implementation of
restoration programs and projects. Addressing and reducing uncertainties in management
decisions and finding solutions to ecosystem restoration and human community resilience
that are sustainable in the face of continued subsidence, rising sea levels and repeated
storm impacts driven by human activities, including climate change, are critical to the
continued environmental and economic productivity of Louisiana and the Gulf of Mexico
region, and other vulnerable coastal deltaic ecosystems worldwide.

2. Scientific Framework and Management Needs
2.1. Scientific Framework of the Mississippi River Delta

The Mississippi River drains approximately 41% of the United States, and is the largest
river system in North America, transporting sediment from the continental interior of its
3.4 million km2 drainage basin to the delta and coastal ocean [32]. The seventh largest
river in the world by sediment load, the Mississippi River has supplied vast amounts of
sediment to the northern Gulf of Mexico, and built the Mississippi River Delta since sea
level stabilized ~7000 years ago [33]. Historically a meandering type of river system, the
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Mississippi River has seasonal flood and non-flood discharge cycles, with mean spring
discharges approximately three times higher than in low water months, and sediment
transported episodically [32,34,35]. Since the 1950s, sediment load in the Mississippi River
has decreased to 145 MMT per year due to dams, bank revetments, meander cutoffs, other
engineering structures, and improved soil conservation in the watershed [32]. The lower
Mississippi River transports this water and sediment, and constructed a Holocene delta
plain that forms ~30,000 km2 of coastal Louisiana [33].

The Mississippi River Delta is a river-dominated delta building into the northern
Gulf of Mexico receiving basin, which has relatively low wave and tidal energy [3,36].
Construction of the Mississippi River Deltaic Plain (Figure 1) occurred in a cyclic series
of events, with major distributaries producing delta lobes within a delta complex on a
~1000–2000-year timeframe [33]. After depositing sediment and building a delta lobe, the
river lost hydraulic efficiency due to a longer river course through the newly built delta,
and switched to a more efficient route to the sea, starting the process of building another
delta lobe [33,35].
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This cyclic delta building produced at least six major delta complexes [33,37] (Figure 1).
The cyclical delta lobe building and degradational events cause coastal land building
and retreat to occur at different places along the coast and times, although over the past
~7000 years a net building occurred [35]. The Chenier Plain in southwestern Louisiana
(Figure 4) was also created by sediments from the Mississippi River transported west-
ward [38]. The abandoned lobe enters a longer destructional phase where subsidence and
marine processes dominate, leading to its deterioration. Wetlands on delta lobes can be
sustained for a portion of the destructional phase through input of flood or storm derived
sediments, and organic accretion [39–41]. The lobe also experiences marine reworking, with
mouth-bar sands developing into barrier islands, which evolve into submarine shoals [42].
The combined processes of subsidence and marine reworking lead to the eventual for-
mation of a coastal bay. The thick Holocene layer of the Lafourche delta, located in an
entrenched alluvial valley, experiences high rates of subsidence, and, as predicted by Cole-
man et al. [35], the lobe appears to be undergoing a more rapid destructive phase than the
St. Bernard complex [43]. The Atchafalaya River distributary currently captures ~30% of
the Mississippi River flow via the Old River Control Structure, and is building the newest,
Atchafalaya/Wax Lake delta lobe [44,45] (Figure 1 and Figure 4).

For over a century, coastal Louisiana has been the focus of intensive studies by geosci-
entists, biologists, engineers, and increasingly by social scientists and restoration practition-
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ers due to its economic and ecological value, and its unique coastal communities [35,46,47].
These studies provide a framework for understanding the natural processes that the Mis-
sissippi River delta and Louisiana coastline will experience.

2.2. Restoration in the Anthropocene: Situation and Need

Historical episodic river flooding produced a deltaic landscape abundant in natural
resources. However, the episodic floods were devastating to early European settlers, and
river levees started to be built in the early 18th century to contain the river in its low flow
channel during high flows, benefitting navigation, and reducing the risk of flooding of
alluvial valley inhabitants, agriculture, and infrastructure. The principal management of
the river for flood risk reduction and navigation has severed the river from its delta, and
contributed to the severe land loss that threatens communities, economic resources, and
vibrant ecosystems and the services they provide [16,46,48–50].

The Mississippi River levees cause river water levels in the channel to rise during
flood periods (as compared to the natural floodplains), and after the Great Mississippi
River Flood of 1927, the Flood Control Act of 1928 incorporated spillways and control
structures into national flood control. Congressional appropriations in 1963 provided
funding to build the Old River Control Structure floodgate system to regulate flow down
the Atchafalaya River to 30% of the flow in the Mississippi River. This set of floodgates
prevent further capturing of Mississippi River flow by the Atchafalaya River and limits
building of the next Atchafalaya/Wax Lake delta lobe. Climate-related forcings have
affected the opening of flood control structures such as increased operation of the Bonnet
Carré Spillway (Figure 4); the spillway was opened an unprecedented two times in 2019,
a historic high-water year fed by high rainfall throughout the Mississippi River Basin.
Through project implementation, over 340 infrastructure projects such as barge gates,
closure structures, crevasses, culverts, floodgates, locks, pumps, and weirs have been
incorporated into the coastal Louisiana landscape, increasing the complexity of restoration
planning.The region experienced an approximate 500-year flood in 2016 [51], and the Gulf
of Mexico region experienced 8 major storms in 2020, including 3 hurricanes and 2 tropical
storms that made landfall in Louisiana. These additional stressors provide logistical,
financial, and planning constraints on communities and restoration planners who are also
responsible for hurricane-related preparedness.

The Atchafalaya and Mississippi Rivers have a highly engineered watershed. Nutrient
over-enrichment and hypoxia threaten resources and ecosystem services in the Gulf of
Mexico [52], and are therefore among the most pressing environmental issues in the United
States [53]. Oil and gas activities contribute to localized subsidence and wetland loss, and
canals and navigation channels produce direct wetland loss, as well as indirect effects of
saltwater intrusion and alteration of hydraulic flow and tidal patterns [54,55]. Invasive
species, faulting, and storms can also contribute to land loss [56,57]. High rates of relative
sea level rise increase the vulnerability of deltas, with rapidly-deposited sediments that
compact and dewater leading to high rates of subsidence. Coastal Louisiana experiences
some of the highest subsidence rates worldwide [58].

Overlain on the natural deltaic processes, anthropogenic infrastructure and processes
now dominate the system in most places [59,60]. The ecosystem being restored in Louisiana
is a “working landscape” where the natural and socio-economic systems are closely linked,
making restoration management inherently complicated. Adaptations, and feedbacks
of adaptation on the evolution of the delta, are hard to predict and project for planning
purposes. Restoration of coastal habitats to replicate any historical coastal footprint is not
feasible. Since 2007, CPRA has used over 165 million cubic yards of dredged sediment
on restoration and protection projects, benefitted over 47,600 acres of land, constructed
60 miles of barrier islands and berms, and improved 340 miles of levees. As of April 2021,
CPRA has 93 active projects that were identified through programmatic planning efforts,
with 33 projects in construction, 51 in engineering and design, and 9 in the planning phase.
Twenty-seven of these projects are hurricane risk reduction, 4 barrier island/headlands,
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1 freshwater diversion, 3 hydrologic restoration, 40 marsh creation, 1 oyster barrier reef,
6 recreational use, 3 sediment diversion, 2 shoreline protection, and 6 other projects [61].
Total proposed project expenditures for state fiscal year (1 July through 30 June) 2022 are
$887 million for 7 projects in planning, 37 in engineering and design, 66 in construction, and
161 in operation, maintenance and monitoring phases (Appendix A). Effective management
of this complex deltaic coastal ecosystem and implementation of the ambitious restoration
program requires reducing uncertainty in decision making and continual learning and
improvement.

3. Addressing Uncertainties in Programmatic Decision Making: The Louisiana Coastal
Master Plan

Hurricanes Katrina and Rita in 2005 converted coastal land to open water [15], caused
the deaths of approximately 1200 people [62], and destroyed or majorly damaged more
than 350,000 homes [63]. The devastation of Hurricanes Katrina and Rita triggered a
recognition that coastal restoration and risk reduction, which at that time was implemented
across multiple Louisiana state agencies, needed to be integrated and comprehensive.
The federal government requested a central authority in Louisiana for all activities and
funds, and development of a coordinated plan of action. The Louisiana State Legislature
passed Act 8 in 2005, forming the Louisiana CPRA and mandating the agency develop
and implement a comprehensive coastal risk reduction and restoration master plan, with
regular updates every 5 years (now every 6 years) to account for the latest science and
engineering, and a reevaluation of the goals and objectives. Louisiana’s Comprehensive
Master Plan for a Sustainable Coast (Coastal Master Plan) and its updates have become the
State’s principal programmatic blueprint for achieving a sustainable coastal zone.

The Coastal Master Plan builds on the long history of research to quantify land
loss rates, patterns, and mechanisms [40,57,64–68], and previous planning efforts in
Louisiana [22,69–71] (Appendix B). It is designed to provide the vision and direction
needed to implement effective projects to meet the overarching goals to build land and
reduce risk in coastal Louisiana. The Coastal Master Plan process informs management
decisions on the programmatic scale, including:

• Which restoration and risk reduction projects to implement;
• How to most effectively use limited resources (e.g., funding, sediment);
• Grouping of projects and timing of implementation.

The objectives of the Coastal Master Plan are to improve flood risk reduction for
communities and businesses, harness the natural processes that built Louisiana’s coastal
landscape, preserve coastal habitats and sustain the unique cultural heritage, and ensure the
continuation of the commerce and industry of the working coast. The Coastal Master Plan
is science based and developed using a participatory process, with input and engagement
from diverse stakeholders in coastal Louisiana, as well as those with national interests.

3.1. Science-Based Numerical Modeling Framework

The scientific core of the iterative Coastal Master Plan development process is a
linked suite of numerical models that project the response of the physical, biological,
and human social coastal environment to proposed future restoration and risk reduction
actions, including taking no action. Given the spatial scope of the Coastal Master Plan
and the breadth of resources in Louisiana’s coastal zone that it governs, that suite includes
individual, but linked, numerical models that project:

• Hydrodynamics and water quality;
• Emergent wetland geomorphology and plant ecology;
• Barrier island geomorphology;
• Focal fish and wildlife species responses;
• Waves and storm surge;
• And human asset damage and risk assessment.
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Building on previous restoration planning efforts in Louisiana, CPRA developed
the 2007 Coastal Master Plan using a refined landscape change model originally devel-
oped for the Louisiana Coastal Area (LCA) Comprehensive Ecosystem Restoration Study
(Appendix B). That refined model was used to predict the effects of the 2007 Coastal Master
Plan project alternatives on the landscape [71].

A number of advancements were made to the predictive models for the 2012 Coastal
Master Plan update, including incorporating feedbacks among various model components
such as vegetation and hydrology [70]. Just a few months after the completion of the
2012 Coastal Master Plan, a 2017 Model Improvement Plan was developed that included
recommendations based on external technical peer review of model components, input
from the 2012 Coastal Master Plan modeling team, and input from two workshops with
local, national, and international experts. The integration of the models used in the 2012
Coastal Master Plan was a large component of the improvements recommended in the
2017 Model Improvement Plan.

This resulted in an integrated framework named the Integrated Compartment Model
(ICM) that includes natural processes that drive coastal land and ecosystem change, and
considered anthropogenic infrastructure such as levees on the landscape. The ICM projects
landscape and ecosystem changes based on relationships modeled for wetlands processes
and vegetation, eco-hydrology, and barrier island morphology. A planning-level model,
the ICM is computationally efficient for running 50-year coast-wide simulations to estimate
candidate project performance under a range of future environmental conditions. Key ICM
outputs include salinity and stage, land-water interface and elevation change, and changes
in wetland vegetation.

New approaches to barrier island morphology and fish and shellfish community
modeling were incorporated for the 2017 update. Improvements were also made to
advance a more process-based approach to simulating physical and ecological dynamics,
including process-based sediment distribution modeling. Model boundary condition
datasets were updated and new stations added where available. An uncertainty analysis of
the ICM investigated the uncertainty in key model outputs driven by uncertainties in model
variables. Habitat suitability index (HSI) models underwent numerous improvements
including development of new statistical relationships for key species, and the inclusion
of new indices for blue crab and brown pelican. Recommendations for the various model
improvements proposed or added for 2017 underwent an independent external review
process and final reports were published by CPRA as technical appendices to the 2017
Coastal Master Plan [72].

The models used for risk assessment evaluate the effects of projects on storm surge
and wave heights from tropical storms, and identify flood depths associated with different
frequencies of inundation across the coast. The model geometry in selected areas was
revised for the 2017 Coastal Master Plan update, and the model was validated with data
from Hurricanes Gustav and Ike [73]. The Coastal Louisiana Risk Assessment (CLARA)
model was modified to incorporate a larger floodplain, improvement of the inventory of
coastal assets at risk, and updates to levee fragility scenarios.

Continuing the updating cycle, while the 2017 Coastal Master Plan is currently in
place [22], the next step in the Coastal Master Plan process is currently underway with
the development of the 2023 Coastal Master Plan. Recommendations from the Predictive
Models Technical Advisory Committee, the Science and Engineering Board, and comments
from external review of 2017 Coastal Master Plan components not addressed in the 2017
Coastal Master Plan are providing the basis for improvements to the 2023 Coastal Master
Plan. Improvements are categorized as focused on predictive modeling by model type,
the overall planning framework, and documentation/outreach/engagement. The list of
improvements for the predictive modeling range from items as straightforward as code
debugging to complex changes that would require restructuring of the modeling analyses
from a deterministic to a probabilistic framework.
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The predictive landscape, storm surge/waves, habitat suitability indices, and risk
assessment models are being updated and refined, and newly available data are being
used to update and refine the environmental and risk scenarios. New environmental
data include longer datasets from the Coastwide Reference Monitoring System (CRMS)-
Wetlands monitoring network, updated sea level rise projections, new subsidence data, and
the National Structure Inventory asset inventory. There have been two solicitations for new
project ideas from stakeholders; and outreach and engagement efforts are also proceeding.
The 2017 Coastal Master Plan process showed that challenges facing coastal populations,
businesses and ecosystems require a regional-scale response, and the 2023 Coastal Master
Plan is integrating regional approaches to restoration and risk reduction.

3.2. Development of Future Environmental Scenarios Based on Updates to the State of the Science

A scenario approach is used for the Coastal Master Plan process to aid in decision
making under uncertain future environmental conditions. Environmental drivers for the
2017 Coastal Master Plan scenario analysis were determined based on a review of relevant
drivers used in the 2012 Coastal Master Plan analysis [74], a literature and data review
to update plausible ranges of each driver, and an analysis of the impact on key model
outcomes. To select the values for the drivers used in scenarios, the response of land
area and landscape change projected by the ICM to environmental driver values was
analyzed. Three environmental scenarios were selected (Figure 2), and outcomes for project
performance over time were projected across this range of possible future conditions.
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Figure 2. Environmental scenarios used in the 2017 Coastal Master Plan.

The definition of the component environmental scenarios provides the basis for the
initial modeling framework runs, which assume no further restoration or risk reduction
actions are taken in the future. A no further action approach can be considered as a man-
agement option, and then serves as the point of comparison for model runs with additional
projects implemented.

3.3. Candidate Projects Identified through a Participatory Approach

New candidate projects were considered in the 2017 Coastal Master Plan. A par-
ticipatory approach to the identification of new projects was undertaken with the New
Project Development Program (NPDP), and new project ideas solicited by CPRA during
two solicitation periods. Restoration project types include hydrologic restoration, shoreline
protection, bank stabilization, oyster barrier reef, ridge restoration, marsh creation, and
barrier island restoration. Risk reduction project types include structural (e.g., earthen
levees, T-walls, and floodgates) and nonstructural risk reduction (e.g., non-residential
floodproofing, residential elevation, and residential voluntary acquisition). Restoration and
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protection projects were evaluated for their effectiveness in building and maintaining land
and reducing risk, and suites of projects (alternatives) were evaluated both for ecosystem
benefits and reduction of levels of risk.

A planning tool that uses elements of multi-criterion decision analysis and robust
decision making was used in the 2017 Coastal Master Plan to facilitate science-based
planning level decision making. The predictive models were used to evaluate the coastal
restoration and risk reduction candidate coastal projects individually, and as groups of
projects, or alternatives. The planning tool incorporated results from the 2017 Coastal
Master Plan predictive models as inputs, as well as including planning constraints such
as sediment availability and funding (Appendix A), and stakeholder preferences. Results
of the predictive models and the planning constraints were used by the planning tool
to develop several project alternatives based on optimization to maximize the goals of
land building and risk reduction under environmental scenarios. Stakeholder input was
incorporated by evaluating the sensitivity of project selection to metrics such as brown and
white shrimp habitats.

3.4. Coastal Master Plan Updates Informed by Scientific Approaches

While the Coastal Master Plan effort is thus informed by the objective numerical anal-
yses informed by the state of the science, it is also responsive to the needs of communities.
Decision making for the 2017 Coastal Master Plan was informed by the public, and CPRA
engaged with an expanded group of stakeholders to better understand challenges citizens
and communities face from coastal land loss, provide information to stakeholders, and
improve the integration of local and state activities. CPRA hosted meetings across the coast
to engage communities, from small groups to larger open house meetings that facilitated
interactions and opportunities to receive input. Technical briefings were also hosted to
provide information about the technical approach, and to receive feedback. Four public
hearings were held in an open house format that included informative exhibit booths, a
presentation, public comments, and informal conversations with CPRA staff.

Advisory groups provided important recommendations and guidance to inform the
2017 Coastal Master Plan development process. Nationally- and internationally-known sci-
entists, engineers, and planners provided working-level guidance via the Predictive Models
and Resiliency Technical Advisory Committees, and technical review and recommenda-
tions via the Science and Engineering Board. Members of the Framework Development
Team provided insight and counsel, and included representatives from federal, state, and lo-
cal governments, NGOs, business and industry, academia, and the coastal community. Five
focus groups integrated community, fisheries, landowner, energy, industry, and navigation
perspectives about restoration and risk reduction projects.

The Coastal Master Plan models and decision support tools were used to project the
performance of projects or project alternatives, and compare projections to Future Without
Action results. The 2017 Coastal Master Plan recommends 124 coastal risk reduction and
restoration projects that are projected to reduce expected flood damages by $150 billion
and build or maintain 2077 km2 of land over 50 years (Figure 3). These results are obtained
from a comparison to Future Without Action under a medium environmental scenario
(Figure 2). Funding of $25 billion is allocated for nonstructural and structural risk reduction
projects, and $25 billion for restoration projects. Underscoring the need for using natural
processes to build and sustain coastal land, the 2017 Coastal Master Plan, like the 2012
Coastal Master Plan, identified eight proposed sediment diversions that provide long-term
benefits.
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3.5. Lessons Learned in Addressing Uncertainties in Programmatic Decisions

External and internal input refines model improvement: the Model Implementation Plan
is critical for providing guidance to the Coastal Master Plan updating process. Input
from both external and internal experts improves robustness and incorporates successful
techniques from other restoration programs into strategic planning and implementation.

Scenario approach provides insight in uncertain environmental conditions: substantial
uncertainties remain in future environmental conditions, such as related to climate change.
The scenario approach enables these uncertainties to be addressed by exploring the effects
of a range of possible future conditions, and how these environmental conditions may
affect project performance over 50 years. The Future With Action prediction clarified that
even with complete plan implementation, there was still a net loss of 3761 km2 projected for
the Medium Environmental Scenario over 50 years. The Future Without Action projections
provide a baseline to compare implementation of programs and projects to build land and
reduce risk.

Usefulness of landscape-scale analysis for programmatic decisions: the Coastal Master
Plan landscape-scale analysis process allows projection of future locations of land, water,
vegetation, and productive fish and wildlife habitat, as well as flooding from storms
across the entire Louisiana coast. Utilizing a reduced complexity model such as the ICM
to represent coastal hydrology allows for reduced simulation times compared to other
numerical models. For instance, a 50-year simulation in the ICM takes approximately
10 days, whereas a similar duration simulation of one-third of the coastal zone domain
would take approximately four times that amount of time with a model that resolves coastal
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hydrology with a higher fidelity. This provided insights for implementation, including that
projects often provide minimal benefits beyond their immediate project footprint. However,
synergistic interactions among projects of different types affecting the same region can
produce greater and longer-term benefits.

Importance of regular updates: advancements in the algorithms, grid, and integration of
the 2017 Coastal Master Plan Integrated Compartment Model, and the incorporation of
new data refined projections of project performance under uncertain future conditions.

Effectiveness of harnessing natural system processes: the Future Without Action projected
that 8838 km2 would be lost in 50 years under the Medium Environmental Scenario, and
10,679 km2 under the High Environmental Scenario [22]. Most of coastal Louisiana is
expected to experience land loss without additional projects, except in areas where the
natural deltaic land processes are still existent such as in the Atchafalaya and Wax Lake
Deltas.

Decision support tool facilitated science-based decision making: the decision support tool
enabled identification of a final plan based on science that most effectively reached the
goals of building land and reducing risk.

Uncertainties in boundary conditions are likely greater than model uncertainties: using model
performance statistics and a suite of environmental boundary conditions representing
possible future climate change and relative sea level rise scenarios, uncertainty in future
landscape configurations was analyzed with the ICM [75]. This analysis focused on
spatiotemporal patterns of land change and found that while magnitude of uncertainties
varies over time and space, the uncertainty attributable to model performance errors is most
impactful on overall uncertainty under the least severe relative sea level rise assumptions.
As higher rates of relative sea level rise are assumed into the future, the impact of model
errors is overwhelmed by the impact of relative sea level rise.

Frequent stakeholder outreach critical: the robust stakeholder outreach for the Coastal
Master Plan informs both stakeholders and CPRA, and is an important component of
effective management. The plan is supported both inside and outside Louisiana; the
Louisiana State Legislature unanimously approved the 2007 Coastal Master Plan, and the
2012 and 2017 Coastal Master Plan updates.

4. Monitoring and Adaptive Management to Assess Project and Program Performance
4.1. System Wide Assessment and Monitoring Program

Data collection and information management are key components of CPRA’s technical
processes, providing necessary data and information on program and project performance
to decision-makers on a timely basis. Monitoring and Adaptive Management inform
management decisions, including:

• Whether program or project implementation should be altered based on performance;
• Whether project operations should be changed due to environmental conditions.

The System-Wide Assessment and Monitoring Program (SWAMP) has been developed
to monitor and assess both natural and human systems in coastal Louisiana to ensure
a comprehensive network of coastal data collection activities is in place to support the
development, implementation, and adaptive management of the coastal risk reduction
and restoration program within coastal Louisiana [76]. The focus of SWAMP is to obtain
repeated long-term (e.g., years to decades) measurements that can be analyzed to detect
changes that may result from both small- and large-scale restoration and risk reduction
projects, environmental disturbances, and other major drivers that impact the system.

SWAMP is being designed in a nested fashion to facilitate the integration of project-
specific data needs into a larger, system-level design framework. It encompasses existing
monitoring programs including the Coastwide Reference Monitoring System (CRMS)-
Wetlands, a network of ~390 sites in coastal Louisiana where a wide variety of empirical
wetlands data are collected, and the Barrier Island Comprehensive Monitoring (BICM)
Program, first initiated in 2007 by the State to monitor all of the barrier islands and
barrier shorelines in Louisiana. SWAMP water quality monitoring, geophysical surveys,
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subsidence studies, sediment budgets, hydrology, above and belowground vegetation
biomass, and fisheries monitoring have been implemented across much of the State’s
coastal area (Figure 4).
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4.2. Adaptive Management Framework

Adaptive management has been used in natural resource management to reduce
uncertainty for more than four decades [77,78]. Adaptive management facilitates resilient
policies for managing ecosystems with the basis of using the best available knowledge to
design and implement management plans, while establishing an institutional structure
that enables learning from outcomes to adjust and improve decision making. Adaptive
management procedures have long been incorporated into coastal Louisiana restoration
processes [71,79,80]. Louisiana’s complex and dynamic coastal area, uncertainties in fu-
ture environmental conditions, and difficulties in predicting outcomes of restoration and
risk reduction projects all present challenges that benefit from an adaptive management
approach [81].

The Coastal Master Plan is developed in an adaptive management framework, with
the recurring update cycle providing the basis for incorporating new scientific and system
dynamics, and project performance information into decision making [82]. By allowing
flexibility in implementation as conditions change, CPRA’s Adaptive Management program
is essential to the long-term performance of projects and the achievement of the greatest
amount of positive ecosystem improvement. Projects selected for implementation by the
Coastal Master Plan process that still have substantial uncertainties undergo feasibility
investigation to analyze alternative project siting and operational details, and to begin
developing Engineering and Design details beyond those established during the Master
Plan evaluations. Pending an outcome of project feasibility, and once 30% design of the
project is reached, the project moves to a more formal Engineering and Design phase,
where 100% design is attained. Once constructed, a project is monitored and, if appropriate,
adaptively managed, including its operations and maintenance. New information and
lessons learned from project monitoring are then incorporated into the next iteration of the
Coastal Master Plan (Figure 5).
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4.3. Lessons Learned in Addressing Uncertainties in Monitoring and Adaptive Management
Decisions

Adaptive Management framework supports decision making: CPRA believes that not taking
action due to uncertainty is not an option, since the Future Without Action is the loss of
large portions of the deltaic plain due to sea level rise, subsidence, and other factors. An
Adaptive Management framework supports action urgently needed to reduce land loss
and risk by reducing the uncertainty of implementation action compared to the Future
Without Action.

Monitoring must align with program and project goals and objectives: The development
and implementation of SWAMP provides much of the data that will be used to evaluate
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and manage the overall risk reduction and restoration program and also serves as the
backbone of project-related monitoring needs. Monitoring and operation of restoration
and risk reduction projects are nested within a larger basin-wide and coast-wide SWAMP
framework and will allow informed decisions to be made with an understanding of system
conditions and dynamics at multiple scales. It is important that program and project goals
and objects are complementary to and align with the long-term monitoring program, and
are tracked at many scales.

5. Improving Knowledge of System Dynamics and Response to Program and Project
Implementation

An important part of the CPRA’s Adaptive Management framework is the identi-
fication and resolution of uncertainties to inform future decision making. Louisiana’s
dynamic coastal environment and shifting baselines associated with ongoing landscape
change results in the need to both identify and prioritize research needs and synthesis
efforts that fill information gaps and assess project and program progress. Applied research
and science synthesis is a knowledge base component of CPRA’s Adaptive Management
process, and helps inform management needs at the project, regional, or coast-wide scales
including:

• Improved understanding of system dynamics;
• Improved predictive capabilities of system response to management actions;
• Assessment of system’s response to management action;
• Assessment of the performance of project types.

Information from project-specific and other research and synthesis activities are shared
both internally and with external audiences in reports, and along with data, models,
maps, and other deliverables are all publicly available in CPRA’s Coastal Information
Management System [83].

5.1. Identifying Science Needs

Components of CPRA’s research and synthesis efforts include a process for identifying,
compiling, prioritizing, and addressing information through targeted studies (research)
or through data and information aggregation (synthesis). Research needs are identified
by personnel from all divisions of CPRA, literature compilation and review, input from
external entities (e.g., science advisory panels, technical workgroups, and researchers), the
identification of information gaps during project or program development, CPRA project
monitoring reports, and responses to specific events.

Priority research areas for CPRA include:

• Understanding uncertainties in project engineering and design, implementation, and
sustainability;

• Reducing uncertainties in future environmental conditions;
• Improving data and assumptions used in monitoring and assessment, predictive

models, and decision-support tools;
• Understanding the dynamics of the social, environmental, and economic coastal

system, and the effects of land loss and implementation of the Master Plan in these sys-
tems; and understanding social, cultural, and economic resilience, and the adaptability
of coastal communities to natural disasters and long-term land loss.

5.2. Collaboration with Gulf-Wide and Regional Efforts

The State of Louisiana and its federal and Gulf of Mexico state partners have allocated
considerable resources and have made long-term commitments to the restoration and
management of wetland and aquatic resources in the Gulf of Mexico coastal zone. CPRA
is sharing institutional knowledge and capacity, and learning from other Gulf states and
entities in a number of regional restoration efforts (Appendix C). Working groups and
entities established after the 2010 Deepwater Horizon Oil Spill that include representatives
from all five Gulf of Mexico states have fostered unprecedented coordination and collabo-
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rative working relationships. CPRA also benefits from, and is engaged in, project advisory
committees for multiple external funding programs to increase the relevancy of research
projects to Louisiana’s coastal management decisions.

5.3. Using Science to Inform Feasibility Decisions and Refine Project Implementation of River
Diversions

For certain project types, development funds are dedicated for feasibility studies
and design phases, wherein the project undergoes additional development that includes
exhaustive analyses and multi-agency collaboration (Figure 5). Complex restoration or risk
reduction projects types (e.g., diversions) have funds available to support research that
addresses important project-specific information gaps or uncertainties. A key component
of the project implementation process is to more fully investigate technical uncertainties to
maximize the benefits of these projects while minimizing unintended consequences.

Nowhere within CPRA’s project portfolio is the need for multiple avenues of applied
research as necessary as with the sediment diversion projects outlined in the Coastal Master
Plan. Multiple scientific studies have attributed at least part of the State’s coastal wetland
loss since the 1930s to the isolation of the coastal wetlands from sustaining freshwater, nu-
trients and sediments due to the construction of the Mississippi River and Tributaries flood
protection levees following the 1927 Great Mississippi River Flood. A cornerstone method
to restore and protect the Mississippi River Delta using natural processes is to reconnect
the river to its delta by diverting Mississippi and Atchafalaya River flows into the State’s
coastal wetlands and open water bodies [22,84–86]. The proposed sediment diversions
are intended to divert freshwater and sediment from the Mississippi or Atchafalaya rivers
into adjacent coastal wetlands in an effort to restore land-building processes that were
interrupted by the construction of levees on the river and to lessen the trend of land loss
that has plagued coastal Louisiana [22]. Lessons learned from implementation, operation,
and assessment of existing freshwater diversions in the State inform additional sediment
diversion planning and design.

The first of these projects that the State is developing is the Mid-Barataria Sediment
Diversion, with an estimated cost of $1.4 B (Figure 4). This sediment diversion project
was included on the Federal Permitting Dashboard in 2017, a government-wide effort
to streamline federal permitting and review, and increase transparency [22]. CPRA has
conducted feasibility and engineering and design analyses that projected the Mid-Barataria
Sediment Diversion would create and sustain 28 square miles of land, and the project’s draft
Environmental Impact Statement (EIS) was recently released for public comment by the
U.S. Army Corps of Engineers in March 2021. The analyses supporting the DEIS occurred
over a period of several years, owing to the scale of the proposed project (a maximum
proposed discharge of 2124 cubic meter per second (cms) flow from the Mississippi River
when river discharge is at 28,317 cms and the concomitant scale of the inferred physical,
ecological and social effects of those flows on the Barataria Basin. Not only have substantial
resources been devoted to the development of a suite of high-resolution numerical models
needed to project those receiving basin responses, State and federal partners have relied on
a long list of scientific investigations on estuarine resources under historical and current
conditions, and the potential effects of freshwater and nutrients on those resources under a
potential Future With Action.

Recently, in recognition of the uncertainties surrounding diversion projects, CPRA
identified the need to synthesize and document the effects of diversion-borne freshwater,
nutrients and sediments on receiving basin wetlands and estuarine water bodies, since
scientific differences in opinion surrounded the potential for beneficial and detrimental
outcomes from implementing river diversions. CPRA scientists partnered with leading
experts in the field of estuarine and coastal wetland ecology to synthesize the effects of
diversions-borne freshwater, nutrients, and sediments on receiving basin wetlands and
estuarine water bodies to account for recent literature and relevant SWAMP data. This
working partnership allowed incorporation of wider community expertise to inform strate-
gic decision making. Results were published in a virtual Special Issue in Estuarine, Coastal
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and Shelf Science that synthesized aspects of changes in deltaic wetlands and open water
bodes that would occur in the absence of restoration action as well as in response to river
diversion included in the 2017 Coastal Master Plan [87]. CPRA has incorporated infor-
mation from the synthesis into nutrient-effect model development for diversion projects
such as the Mid-Barataria Diversion Project and will integrate that same information into
subsequent Coastal Master Plan and project-specific planning models to refine modeling of
ecosystem response to riverine nutrients.

CPRA and its federal partners have since drafted an extensive Project Monitoring
and Adaptive Management Plan for the Mid-Barataria Sediment Diversion, which outlines
a robust data collection and analysis effort intended to occur well into the future. That
effort will provide a large body of empirical data to validate the numerical models used for
project planning, and support efforts to confirm, refute, or otherwise amend many of the
scientific theories which currently underpin the agency’s diversion program.

5.4. Research to Resolve Uncertainties
5.4.1. Coastal Science Assistantship Program

The Coastal Science Assistantship Program (CSAP) directs scientific research to answer
questions about planning, designing, constructing and evaluating coastal risk reduction
and restoration projects. CPRA awards, which fund a three-year period of study for Master
of Science students enrolled full time at Louisiana colleges/universities, are intended to
support academic research that will improve the planning, design and construction of
coastal restoration projects, thus contributing to CPRA’s overall success. In addition, these
assistantships help CPRA foster closer ties with the academic community and promote a
platform for collaboration by developing relationships with students and professors. These
improved relationships allow for greater communication and participation in the State’s
coastal risk reduction and restoration program. In addition to monetary support for up to
three years, participation in the CSAP provides students invaluable professional working
experience beyond that gained in traditional academia. The required internship with CPRA
staff offers on-the-job training that promotes understanding of CPRA’s daily activities and
of broader issues relevant to coastal risk reduction and restoration. The Louisiana Sea
Grant College Program manages the contracting, with funding and internship supervision
provided by CPRA. Research projects are selected by a team of CPRA personnel who
evaluate each application for technical merit, originality, credibility, and relevance to
CPRA activities. Since CSAP’s inception in 2008, the program has supported 66 Master of
Science students at Louisiana institutions. Since CSAP’s inception in 2008, the program has
supported 66 Master of Science students at Louisiana institutions, 49 theses and more than
9500 internship hours with CPRA. Students supported by this program have gone on to
produce more than 90 journal publications.

5.4.2. RESTORE Act Centers of Excellence Research Grants Program

Louisiana will receive approximately $26 million over 15 years from the RESTORE Act
Center of Excellence Research Grants Program to support research relevant to implementing
the Coastal Master Plan through grant allocation. The Louisiana Center of Excellence has
three advisory entities. The Executive Committee is comprised of senior research officials
from Louisiana’s universities and research organizations and is weighted towards those
with a strong historic focus on coastal issues. The External Review Board is a group
of independent scientists and engineers convened to provide technical feedback on an
original Research Strategy and to serve as a panel for research proposal review. The
Technical Working Group is composed of subject matter experts and worked with Center
of Excellence staff to develop the original Research Strategy and a subsequent Research
Needs document. As of the completion of final project reports by 2020, 40 peer reviewed
publications were published or in press, over 60 conference presentation were completed or
planned, and 46 undergraduate and graduate students participated in the research projects.
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The value of the Center’s relevant research is demonstrated by one of the LA-COE
graduate studentship research projects selected for funding during Phase I of the RESTORE
Center of Excellence Research Grants Program. The project evaluated radar-based precip-
itation datasets and the evolution of radar-rainfall performance [88]. This research was
relevant to CPRA’s knowledge base to better understand short-term precipitation patterns,
and improve meteorological forcings on coastal system models. This project was also
directly relevant to integrating radar-based precipitation products into the 2017 Coastal
Master Plan ICM hydrology subroutine. The improved models for the 2023 Coastal Master
Plan now use bias-corrected radar-rainfall timeseries, a distinct improvement over the 2017
modeling effort given the paucity of rainfall gages within the coastal zone of Louisiana [88].

5.5. Documenting Progress and Resolving Uncertainties through Reports and Synthesis Efforts
5.5.1. Coastal Wetlands Planning, Protection and Restoration Act Reports to Congress

Evaluation of the effectiveness of projects implemented is an important component of
successful management. Congress established the Coastal Wetlands Planning, Protection
and Restoration Act (CWPPRA) in 1990 (Public Law 101–646, Title III) in response to
recognition of the ongoing severe coastal wetland losses in Louisiana and the increasing
impacts on locally, regionally, and nationally important resources. Congress established
and directed the Louisiana Coastal Wetlands Conservation and Restoration Task Force (Task
Force) to prepare, annually update, and implement a list of coastal wetland restoration
projects in Louisiana to provide for the long-term conservation of wetlands and dependent
fish and wildlife populations. In addition, Congress directed the Task Force to provide
scientific evaluation every three years on the effectiveness of the projects as required by
Section 303 (b) (7) of CWPPRA and their benefit to fish and wildlife. CWPPRA collects
information both at the project level and coastwide through CRMS to assess cumulative
benefits of restoration.

The report typically provides an overview of the CWPPRA program and process, CW-
PPRA’s benefits to fish and wildlife, information on the CWPPRA project selection process
and planning and implementation, evaluation of the CWPPRA program with CRMS moni-
toring data, and evaluation summaries of selected CWPPRA projects. CWPPRA has served
as the proving ground for many restoration techniques and a model for future projects yet
to be designed. Many lessons learned through CWPPRA have been incorporated in current
restoration projects (e.g., CWPPRA demonstration projects). Since its inception, CWPPRA
has protected and restored almost 36,500 hectares (358 square kilometers) of Louisiana’s
coastal wetlands in its 1990–2015 projects.

5.5.2. Hydrologic Basin-Level Assessments and Coast-Wide Science Synthesis

Critical to successful management of the coastal Louisiana ecosystem are quantifying
the baseline conditions and evaluating change in the natural and human systems to support
the strategic implementation and assessment of restoration projects. Louisiana’s coastal
zone has historically been sub-divided into nine separate, functionally-distinct (for the
most part) hydrologic basins. CPRA has initiated hydrologic basin-level natural systems
assessments to synthesize information and data at the regional, or hydrologic basin level.
These reports: (1) synthesize historical and current conditions; (2) summarize the con-
structed restoration and risk reduction projects within the basin; (3) assess the individual
and cumulative effects of a project or suites of projects on the condition (e.g., localized land
loss, hydrologic functioning), and restoration goals within the basin; and (4) improve the
understanding of the collective effectiveness of restoration projects. Within-basin sources
of variation are assessed, with a current primary focus on recent CRMS and SWAMP data
within the basin. Recommendations are included to improve the outcomes of restoration
and risk reduction implementation.

The value of the Basin-Level Reports was recently illustrated in altered CPRA de-
cision making regarding the Calcasieu Ship Channel Salinity Control Measures Project
(Figure 4), which is a hydrologic restoration project in southwestern Louisiana, selected
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for the 2017 Coastal Master Plan’s first implementation period, with an estimated project
cost of ~$260 M. Hydrology of this Chenier Plain area has been substantially altered by
navigation channels such as the Calcasieu Ship Channel. The 2017 Coastal Master Plan
projected approximately 470 km2 of land loss in the Calcasieu/Sabine Basin over the next
50 years under the Future Without Action. The CPRA basin report of the region found
that present environmental, structural, and operational conditions have altered processes
in the Basin such that persistent inundation and resulting flood stress is currently the
main contributor to marsh vulnerability in this system, while salinity is currently better
controlled than it was in previous decades [89]. CRMS monitoring data were instrumental
in finding that both flood stress and high salinity pose critical threats to marsh health
if not controlled. The original project was designed to reduce the rate of land loss by
maintaining brackish and, farther from Calcasieu Lake, fresh salinity regimes longer to
maximize organic marsh accretion, thus maintaining sufficient elevation to mediate sea
level rise-driven collapse for as long as possible. Based on the findings in the basin report,
the project underwent a reanalysis of projected project impacts, and CPRA concluded that
the original project should be adjusted, with a path forward that includes a combination of
large-scale marsh creation/nourishment and substantial marsh drainage improvements.
This change of scope of the project from reducing the rate of land loss through salinity
control to other measures that reduce flood stress such as marsh drainage improvements
and marsh creation and nourishment, was a direct result of increased understanding at
the basin scale that was incorporated to adjust a project-level management decision, and
associated engineering and design activity and funding.

5.5.3. Project Monitoring Synthesis

The shift to basin-level data summaries does not mean that project-specific monitoring
is not continuing Developing scientific synthesis to resolve knowledge and information
gaps is important to the success of the risk reduction and restoration program. Monitoring
programs for CPRA’s restoration and risk reduction projects are currently being managed
and/or conducted by CPRA and the United States Geological Survey. Project-specific
monitoring often begins prior to construction in order to establish baseline data, and then
continues once construction of projects is complete. Monitoring activities are conducted
to determine how well a project is progressing towards meeting its goals and objectives.
Monitoring reports are prepared and are available for review by the public on CPRA’s web-
site. Each report contains information gathered and analyzed by scientists and engineers
describing operation and maintenance of the project and whether or not it is functioning as
expected. Project-specific reports are written for all stages of project development, from
feasibility studies, engineering and design, to monitoring and assessment. CPRA’s moni-
toring programs provide CPRA the opportunity to evaluate the effectiveness of individual
projects at multiple scales as well as the combined effects of multiple projects across ecolog-
ical basins. Synthesis projects on specific topics that have scientific uncertainties are also
undertaken.

5.6. Targeted Research Drives the Expansion of the Louisiana Coastal Knowledge Base

Over 150 research projects were funded by CPRA from 2010 through March 2021
(Figure 6), which do not include project-specific modeling studies or feasibility studies.
CPRA-funded research projects have produced high-quality research results that are appli-
cable to the overall (multi-agency) coastal program’s knowledge base, and often directly ap-
plicable to project and program implementation. CPRA-funded research projects increased
knowledge about processes and techniques relevant to planning efforts for numerous
topical areas (Figure 6). Understanding geological mechanisms in the complex Mississippi
River Deltaic Plan is important for predicting interactions of geological effects on projects,
and is one of the largest uncertainties in modeling projections. CPRA funded work that
increased understanding of subsidence rates in the coastal basins, faulting, consolidation
and overwash processes, and coastal landform evolution, which reduced uncertainties in
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geological components of program and project implementation. Geotechnical considera-
tions are also important in project planning, and applied research projects characterized
dredged sediment, settlement processes, and determined that sampling/specimen size
does not have a significant effect on undrained shear strength in soft soils. Results are
applicable to project planning that accounts for differences in soil, slurry, and marsh fill
materials.
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The effects of coastal restoration and risk reduction projects on coastal habitats and
wildlife are also important considerations for project and program implementation. Funded
research projects increased understanding of river diversions and nutrient influences on
wetlands and soils and phytoplankton dynamics. Effects of diversions on salinities and
fauna were clarified. Research also enhanced flood hazard assessment capabilities through
development of coupled hydrologic and surge processes modeling. Increased understand-
ing of the dynamics of the Mississippi and Atchafalaya Rivers, and estuarine gradients
and mixing are key components of improved modeling and projection. Hydrograph-based
sediment availability and investigation of river sediment dynamics in response to flow
regulation and river engineering found impacts on sedimentation patterns and increased
avulsion risk. Interactions among hydrology, sediment, and vegetation were characterized
in the Wax Lake Delta, and for specific wetland species.

Social/economics research and the growing recognition of its importance to deci-
sions on risk reduction and other projects, and in planning for population transitions, led
CPRA to initiate funding in this topic area in 2013. Research increased understanding
of how to integrate traditional knowledge from local stakeholders into decision making,
and the economic implications of continued land loss. Research on designing and facili-
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tating an equitable relocation strategy provided CPRA a conceptual model for relocation
decisions [90].

Over 2800 technical reports developed since 1980 have documented institutional
knowledge such as lessons learned, and synthesized the vast amounts of information
and data collected (Table 1). Reports have also focused on specific management-related
questions (e.g., evaluation of certain restoration techniques, model performance, and
geotechnical settlement) [83]. Basin-level assessments summarized projects and cumulative
effects of projects on restoration goals within the Mermentau [91] and Calcasieu-Sabine
Basins [89] (Figure 4). Preliminary assessment of the Terrebonne Basin found that salinity
and inundation drive land change (gain or loss) and vegetation richness patterns in the
basin. Lessons learned have been documented and applied including improved design
of barrier island projects based on performance [92], and refined project types authorized
based on performance and improved understanding of the problems [93].

Table 1. Project, programmatic, and synthesis reports developed since 1980 in support of coastal Louisiana risk reduction
and restoration efforts.

Report Type Number of Reports Scope

Data collection 321 Data collection methods, QAQC, summary
Survey 465 Baseline and project surveys and methodologies

Geotechnical 111 Geotechnical properties and engineering analyses
Feasibility 162 Design guidelines to assess project feasibility

Environmental assessment 55 Evaluation of environmental impacts
Project completion 148 Project features, benefits, personnel, construction costs
Ecological review 48 Review of project design as of 95% design review

Operations, maintenance, and monitoring 459 Project-specific operations, maintenance, and monitoring
Inspection 424 Project engineering and structural integrity

General programmatic 636 Annual plans, adaptive management bulletins, QAPPs,
communication documents, other

5.7. Lessons Learned in Addressing Uncertainties in System Dynamics and Response to Program
and Project Implementation

Value of a robust monitoring program: data collected by CPRA’s monitoring programs
were important sources for updating coastal datasets used in modeling and assessment
efforts.

Formalize, expand, and support process to identify and prioritize research and synthesis needs:
identifying research priorities helps focus research funding on critical uncertainties for
decision making. Coordination and collaboration in the identification and prioritization of
research and synthesis needs across programs in Louisiana is needed to avoid duplication
of efforts and to discuss opportunities of leveraging resources and maximizing efficiencies
in addressing research and synthesis needs.

Increase effective communication of research needs: it can be very difficult to obtain research
that addresses a critical management need. Researchers can be narrowly focused on their
area of expertise, and determining research priorities to address management needs that
are both specific to a policy or practice, and that contribute to general knowledge and
understanding takes substantial effort. CPRA has shifted to targeted requests for proposals
for research programs that identify priority research needs that are a relevant fit for the
program. Through various review processes, CPRA has found that determining if a
research proposal is relevant to program implementation is difficult if a reviewer is external
to the agency. Additional strategic actions should be undertaken to ensure new, external,
and relevant ideas are incorporated and communicated.

Foster opportunities to synthesize project-specific reports: basin-scale synthesis reports
help assess effects of multiple projects, and inform management of projects to maximize
synergistic effects. A centralized effort should be developed for synthesizing project-
specific reports to address broader information and research needs, and provide consistency
for aggregation and evaluation of project performance. Expanded efforts to synthesize
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aspects of changes in deltaic wetlands and estuarine landscapes that could occur in the
absence of restoration action as well as in response to river sediment diversions included
in the Coastal Master Plan would further inform management decisions.

Refine approach for applying research to decisions: applied research projects often increase
the knowledge base for making decisions, but it can be difficult to measurably link research
projects to specific management decisions. CPRA incorporates a CPRA liaison or technical
contact on funded research grants which has facilitated communication and translational
research. A number of funding organizations have included advisory committees and/or
science co-production as a component of research proposals that include agency staff,
which helps provide conduits to connect researchers to decision makers. The approach of
translating research into practice needs to be further refined to maximize application of
research efforts.

Importance of publication and value of peer-review: CPRA publishes a large number of
government reports and collects extensive monitoring datasets that provide information to
managers and stakeholders. Increasing the publication of corresponding peer-reviewed
literature based on analysis and synthesis of restoration and protection results would
increase the robustness of applied science and processes that inform decision making on
large-scale and costly projects that impact multiple stakeholders.

6. External Review and Evaluation

An additional process CPRA uses to incorporate new and existing knowledge into
management decisions is through external evaluation. Both existing independent peer
review processes and advisory review processes for specific purposes are used. Evaluations
provide a mechanism for incorporating knowledge from other systems and topic-specific
expertise to inform management decisions including:

• Investments needed to improve system knowledge;
• Changes needed to formalize adaptive management;
• Adjustments in planning processes to account for changing conditions.

6.1. External Evaluation

Science advisory committees and boards are an important component of CPRA’s
restoration program that is based on the best available science. Earlier text already men-
tioned the Coastal Master Plan Predictive Models Technical Advisory Committee, Re-
siliency Technical Advisory Committee, and Science and Engineering Board that provide
insight into specific elements of the Coastal Master Plan process. Outside the Coastal
Master Plan process, CPRA established an Expert Panel on Diversion Planning and Imple-
mentation in 2014 to provide independent advice as plans were refined for implementing
sediment diversion projects along the Mississippi and Atchafalaya rivers that support
coastal restoration. The Expert Panel was charged to identify critical scientific and technical
uncertainties, suggest specific research to reduce uncertainty, and review and comment
on technical reports, model outputs, and other aspects of project development. Meetings
of the panel were structured to ensure key input was received from a variety of local
experts, stakeholders, and citizens. Panel reports, wherein the Expert Panel on Diversions
and Implementation provided recommendations to CPRA, which included the need for
socio-economic analyses, were presented at meetings of the CPRA Board.

An external Louisiana Coastal Neotectonics and Subsidence Expert Panel was con-
vened in 2019 under CPRA’s Lowermost Mississippi River Management program to im-
prove understanding the potential impacts of neotectonics on management of coastal
resources, and better quantify variable subsidence rates across the Mississippi River Delta
Plain. Presentations by regional experts were presented to the expert panel, which was
charged with weighing the presented data, interpretations and conclusions [94].

An Adaptive Management Expert Panel reviewed CPRA’s Adaptive Management
program, and provided insights and lessons learned from the Everglades, Chesapeake Bay,
Platte River, and the Columbia Estuary programs that have used an adaptive management



www.manaraa.com

Water 2021, 13, 1528 21 of 29

approach. Recommendations from the panel included lessons learned from adaptive man-
agement experience in these other ecosystems, how adaptive management was initiated
and implemented in these locations, and some indication of how these lessons learned
could be applied within Louisiana. The panel members shared their thoughts on some
of the likely challenges in implementing adaptive management within coastal Louisiana,
including large spatial scale, complexity of ecosystems and stakeholders, regulation of river
flow, and highly altered landscape. For CPRA Adaptive Management, the panel suggested
developing a short (<= 25 pages), clear, simple, and cost-effective adaptive management
plan, with easily accessible documentation. The panel also recommended that key CPRA
personnel be designated to monitor and coordinate adaptive management efforts within the
agency, to train staff, and to integrate and operationalize adaptive management processes
within work flows. A large report was produced collating information from both CPRA
and the Deepwater Horizon Natural Resource Damage Assessment program’s Louisiana
Trustee Implementation Group (Appendix C), with key findings [95] including recom-
mending coordination, a lessons learned database, ecosystem reporting, an operationalized
electronic handbook, model repository, and standard operating procedures for stakeholder
engagement.

6.2. Lessons Learned from External Review and Evaluation

Value and benefit to reviews: CPRA has been responsive to both internal and external
evaluations, and is increasing efforts to leverage existing peer review processes, recognizing
the value and benefits of both aspects of review.

External reviews have limitations: there can also be challenges in receiving relevant
external advisory information from committees and other entities, given the complexities
of the deltaic system. Moreover, external reviewers have at times not appreciated the
extensive processes undertaken during project delivery, and the complex interactions
between various interests and stakeholder groups.

Exiting architecture is not data limited: the coastal Louisiana system has extensive
datasets and natural system processes knowledge. There is a need to more fully and
meaningfully integrate data and vast amounts of research/science and learn from other
programs.

Translating research from knowledge to practice: once research is complete, the process for
translating research from knowledge to practice and incorporating new knowledge into
project decisions is not well defined. This point emphasizes the value and role of outside
scientific advice to the State’s coastal program and, as addressed in Section 4, the need
for a technically-robust agency staff. External scientific research is of immense value to
the State as it plans and implements its risk reduction and restoration project portfolio.
However, every scientific study has its caveats that may constrain consideration of its
findings. The combination of outside experts advising the program and internal technical
staff that can recognize those constraints and properly apply study results is critical for
ensuring a scientifically-sound program and well-informed management decisions.

Structure and governance of Adaptive Management program: identifying the scope of an
Adaptive Management program proved challenging, whether it would be CPRA-focused,
or incorporate the multiple regional and Gulf funding entities (Appendix C). These are
important elements to clarify early in the process. Restoration of the deltaic ecosystem
encompasses preparations for a changing climate, and restoring both coastal wetlands and
ecosystem services. Capturing collective institutional knowledge is important for refining
program and project implementation.

Telling the Restoration Story: developing scientific synthesis to assess performance of
management decisions and project and program implementation is important to the success
of the risk reduction and restoration program. Analyzing outcomes of restoration efforts at
scale and assessing effectiveness is often more complex than additive impacts of individual
projects [96]. That type of systematic effort requires identifying consistent parameters and
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metrics for monitoring, especially if data are used for different management purposes
and/or regions.

7. Discussion

Louisiana’s coastal natural environments are critical to the ecology of the Gulf of
Mexico, the identity of the State’s human communities and the nation’s economy. CPRA’s
restoration approach integrates science into long-term coastal restoration planning to
reduce and address uncertainties in determining restoration action need and the imple-
mentation of effective projects. Applied science and synthesis is incorporated at each step
of the program and project development and implementation process, and includes expert
input and review. Nowhere else has a restoration program of this scale been developed or
implemented, and the program’s success relies on using the most advanced technical infor-
mation and decision support tools, and a keen understanding of the complex interactions
and trade-offs that are inherent in a program of this magnitude.

Restoration in coastal Louisiana is a complex endeavor requiring the use of natural
processes in a system experiencing the results of many anthropomorphic changes, including
dams, levees, and changes to nutrient and sediment dynamics in the Mississippi and
Atchafalaya Rivers which are being impacted upstream. The Coastal Master Plan process
integrates principles such as sediment limitation, natural processes, and climate change
uncertainties in a scenario approach underpinning the model projection. Riverine sediment
resources can supply a portion of the needed sediment for restoration projects. However,
the current riverine sediment load is insufficient for restoring the Louisiana coast to its
former extent, given reduced sediment supply and changing environmental conditions such
as rising sea levels [97]. Indeed, Blum and Roberts [97] concluded that without sediment
addition, “significant drowning of the delta is inevitable.” Both the Future Without Action
and Future With Action models run substantial coastal wetland loss over the 50-year period
of analysis. When compared against each other, though, the Future With Action projections
estimate that potential wetland loss can be offset by as much as 3000 square kilometers, in
the case of the most severe environmental scenario [22].

Louisiana’s large-scale ecosystem restoration program is guided by a science-based
Coastal Master Plan, and needs and opportunities for science to address technical uncer-
tainties occur throughout the planning and project implementation process. This paper
reviews how CPRA’s processes incorporate science to resolve scientific and technical in-
formation needs and uncertainties at project and program scales to inform management
decisions. A tremendous amount of knowledge is generated through CPRA’s restoration
efforts that increases understanding of the coast it is charged with protecting and restoring.
Institutional knowledge gained by Louisiana from the planning and implementation of
various restoration plans over the last few decades is also directly relevant to the risk
reduction and restoration of resources in other states around the Gulf and to other coastal
regions around the globe.

Author Contributions: A.M.F. conceptualization of the paper. All authors developed and imple-
mented methods to incorporate science in planning processes. A.M.F., J.W.P., R.C.R., E.D.W. and
L.A.S. undertook the formal analysis and synthesis. Manuscript writing—original draft preparation,
A.M.F.; writing—review and editing, A.M.F., J.W.P., E.D.W., S.L., D.C.L., R.C.R. and L.A.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Reports and data reviewed for this article can be found here: https:
//cims.coastal.louisiana.gov/ (accessed on 30 April 2021).

Acknowledgments: We would like to acknowledge and thank John Troutman, Darin Lee, Paulina
Kolic, Bill Boshart, Tommy McGinnis, Erin Plitsch, Melissa Hymel, Syed Khalil, Ed Haywood, and

https://cims.coastal.louisiana.gov/
https://cims.coastal.louisiana.gov/


www.manaraa.com

Water 2021, 13, 1528 23 of 29

other CPRA staff who have worked on technical planning processes. Additional members of the
2017 Coastal Master Plan Model Decision Team [22] provided conceptualization and implementation
guidance for the 2017 Coastal Master Plan. We thank three reviewers for their comments that greatly
improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Funding

The Coastal Master Plan is implemented yearly as described through annual plans
that establish and constrain CPRA’s funding priorities. CPRA projects are funded through
various funding sources including the State Mineral Revenue, the Gulf of Mexico Energy
Security Act, the Coastal Wetlands Planning, Protection and Restoration Act, and State
Surplus Funds [98]. In 2010, the BP Deepwater Horizon Oil Spill, a tragedy that killed
11 people, was the largest marine oil spill in history [99], and impacted the Gulf of Mexico
region. Coastal Louisiana was severely affected by the 4.9 million barrels of oil that were
discharged into the Gulf of Mexico [100]. The total Deepwater Horizon oil spill settlement
amount to Louisiana is a minimum of $7.8 billion over 15 years for ecosystem and economic
restoration. Most of CPRA’s funding sources have specific guidelines of how funds can
be used. Oil spill settlement funds have increased CPRA’s revenues, with $1.08 in total
projected expenditures for Fiscal Year 2021 [98].

Appendix B

Building on Previous Restoration Planning Efforts in Louisiana

With Gagliano and van Beek’s research findings on coastal Louisiana land loss in the
1970s, attention started to be focused on the problem and in restoration of the coast [66,101–103].
In 1981, Louisiana Act 41 established the State’s Coastal Protection Trust Fund for coastal
restoration. The Caernarvon Diversion in Louisiana (Figure 4) was authorized by the
Water Resources Development Act, and built in 1988–1991 in partnership with the U.S.
Army Corps of Engineers, with the State’s Coastal Trust Fund providing the state’s share
of funding; operations began in 1991. The Louisiana Legislature passed Act 6 of the Sec-
ond Extraordinary Session in 1989 and established Louisiana’s Wetlands Conservation
and Restoration Fund, which used a portion of Louisiana’s annual oil and gas severance
taxes [104]. National legislation was enacted in 1990 to identify, prepare, and fund con-
struction of coastal wetlands. The Coastal Wetlands Planning, Protection, and Restoration
Act, also known as the “Breaux Act” after Louisiana Senator Breaux who championed the
legislation, was the first major federal program to fund coastal wetland restoration projects
(with state cost share). A restoration plan titled “Louisiana Coastal Wetlands Restoration
Plan” was completed in 1993, and a multi-agency task force has undertaken studies and
construction of restoration projects [105].

A recognition of the scale of the land loss problem and the necessity of large-scale
efforts to address it [57] prompted collective strategic planning including Federal, State, and
local governments resulting in Coast 2050: Toward a Sustainable Coastal Louisiana (Coast
2050) [84]. The Coast 2050 plan identified causes and consequences of land loss, regional
ecosystem management strategies, and institutional issues. The cost of implementation of
the strategies identified was approximated at $14 billion [84].

In 2004, the LCA Comprehensive Ecosystem Restoration Study, which built upon
strategies identified in the Coast 2050 plan, was completed by the Corps of Engineers
and the State of Louisiana. In addition to a multi-agency Project Delivery Team, over
120 scientists, engineers, and planners participated in modeling, review, and advisory
capacities [103]. The CLEAR system was used to evaluate restoration alternatives, based on
projections of hydrology, morphology, vegetation, and habitat suitability [71,106]. Congress,
through the Water Resources Development Act (WRDA) of 2007, authorized more than
$2 billion to restore wetlands in Louisiana [107].
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Appendix C

Appendix C.1. Gulf of Mexico Alliance

Louisiana is a member of the Gulf of Mexico Alliance (GOMA), a regional ocean part-
nership intended to address technical issues germane to all five Gulf of Mexico states. Led
by those five states, GOMA has a large network including federal agencies, academic insti-
tutions, businesses, and non-profits, working collaboratively to enhance the environmental
and economic health of the region. The current structure of GOMA has multi-agency teams
that are addressing technical aspects associated with coastal community resilience, habitat
resources, water resources, and wildlife and fisheries, along with data and monitoring and
education and engagement topics. GOMA has provided the State with access to resources
to address some of our recognized technical uncertainties (where they overlap with those
of the other four Gulf states), and conversely allows for both the communication of State
efforts to neighboring states and provides an opportunity for State technical leadership on
multi-state efforts.

Appendix C.2. Gulf Coastal Ecosystem Restoration Council Monitoring and Assessment Working
Group

In July 2012, the Resources and Ecosystems Sustainability, Tourist Opportunities, and
Revived Economies of the Gulf Coast States Act (RESTORE Act) established the Gulf Coast
Ecosystem Restoration Council (Council), which has oversight of 60% of expenditures from
the Deepwater Horizon Spill Gulf Coast Restoration Trust Fund. The RESTORE Council
Monitoring and Assessment Working Group (CMAWG) serves as the leadership body
responsible for coordinating Council monitoring activities, including the recommenda-
tion of monitoring and assessment standards that will be used for Council projects and
programs. The CMAWG consists of primary and secondary representatives from the 11
RESTORE Council members (States of Florida, Alabama, Mississippi, Louisiana, and Texas;
U.S. Departments of Agriculture, Interior, Commerce and Homeland Security; U.S. Army
Corps of Engineers; and the Environmental Protection Agency). CPRA is the Louisiana
state agency with representatives on the CMAWG.

Appendix C.3. Natural Resources Damage Assessment

The Louisiana Trustee Implementation Group (LA TIG) represents a joint effort be-
tween the State of Louisiana (CPRA, Louisiana Oil Spill Coordinator’s Office, Louisiana
Department of Environmental Quality, Louisiana Department of Wildlife and Fisheries,
Louisiana Department of Natural Resources) and the federal trustees (Department of Com-
merce: National Oceanic and Atmospheric Administration, Department of the Interior, U.S.
Environmental Protection Agency, and the U.S. Department of Agriculture) to evaluate
the impacts of the BP Deepwater Horizon Oil Spill in Louisiana, and to plan and carry
out restoration efforts. The LA-TIG developed restoration plans for Louisiana resources
impacted by the BP oil spill [108]. A portion of Natural Resources Damage Assessment
(NRDA) funds to implement restoration in Louisiana are for Monitoring and Adaptive
Management (MAM), and the LA TIG initiated a process to clarify decision making pro-
cesses to guide future spending of these MAM funds. CPRA is leading the process (with
other LA TIG members) of developing objectives for each NRDA restoration type, in-
cluding wetlands coastal and nearshore habitat and other restoration types to provide a
decision-support tool for funding MAM activities.

Louisiana (including technical representatives from CPRA) also participates, along
with other Gulf states and federal entities, in a Cross-Trustee Implementation Group
(Cross-TIG) Monitoring and Adaptive Management (MAM) work group. This group was
established to meet monitoring and Adaptive Management responsibilities laid out in
the Programmatic Damage Assessment and Restoration Plan and the Final Programmatic
Environmental Impact Statement and the Trustee Council Standard Operating Procedures.
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Appendix C.4. Mississippi River/Gulf of Mexico Hypoxia Task Force

The role of the Mississippi River/Gulf of Mexico Hypoxia Task Force (HTF) is to
provide a working collaboration among states, federal agencies, and tribes to reduce
nutrient pollution in the Mississippi/Atchafalaya River Basins and the extent of the hypoxic
zone in the Gulf of Mexico. The goal of the HTF is to reduce the hypoxic zone to less than
5000 km2 by 2035 with an interim target to reduce nitrogen and phosphorus loading 20%
by 2025 (relative to the 1980–1996 baseline average loading to the Gulf). The 2020 Gulf
of Mexico hypoxic zone measured 5489 km2, a relatively smaller size due in large part to
mixing caused by Hurricane Hanna [109]. The 5-year average size is 14,007 km2. The HTF
is a partnership of 12 states along the Mississippi River (including Louisiana), five federal
agencies, and a representative for Tribal Nations.

Appendix C.5. Synergies with Regional-Scale Efforts

CPRA research priorities were shared with the National Academies of Science Gulf
Research Program and the Gulf of Mexico Alliance, and incorporated into their respective
strategic plans [110,111], broadening the potential funding options for addressing those pri-
orities. CPRA technical staff serve on advisory committees for numerous Louisiana research
projects funded by external entities such as Louisiana Sea Grant, the National Oceanic
and Atmospheric Administration’s RESTORE Science Program, the National Academies
of Sciences, Engineering, and Medicine Gulf Research Program, and the National Science
Foundation, as well as the program advisory boards themselves.
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